THERMAL DECOMPOSITION OF POTASSIUM COBALT HEXACYANOFERRATE(II)

J., LEHTO and S. HAUKKA

University of Helsinki, Department of Radiochemistry, Unioninkatu 35, 00170 Helsinki (Finland)

P. KOSKINEN

Technical Research Centre of Finland, Concrete and Silicate Laboratory, Betonimiehenkuja 5, 02150 Espoo (Finland)

M. BLOMBERG

University of Helsinki, Department of Physics, Siltavuorenpenger 20 D, 00170 Helsinki (Finland)

(Received 9 October 1989)

ABSTRACT

Potassium cobalt hexacyanoferrate(II), $K_2CoFe(CN)_6 \cdot 1.4H_2O$, loses its water when heated up to 170 °C, and the anhydrous compound begins to decompose above 230 °C. The cyanide groups are evaporated off in the temperature range 230-350 °C, and the solid products thus formed are K_2CO_3 , Fe_2O_3 , Co_3O_4 and $CoFe_2O_4$. In the range 550-900 °C, the cobalt-containing compounds become CoO, and K_2CO_3 probably partly decomposes to K_2O , so that the product mixture at 900 °C is K_2CO_3/K_2O , Fe_2O_3 and CoO. Above this temperature, K_2CO_3 decomposes to K_2O .

INTRODUCTION

A great number of transition metal hexacyanoferrate(II)s have been studied for their prospective use in the separation of radioactive cesium nuclides from nuclear-waste solutions [1-3]. One of the most promising cesium-selective hexacyanoferrate(II)s is potassium cobalt hexacyanoferrate-(II), $K_2 \text{CoFe}(\text{CN})_6 \cdot xH_2\text{O}$ [4-8]. The thermal behaviour of this compound has been studied to only a limited extent. Ceranic [9] has reported on the formation of potassium carbonate together with undefined iron and cobalt oxides upon heating it up to 700 °C. The present paper gives a detailed report on the solid decomposition products and the temperature ranges of their formation. The gaseous products were not identified.

EXPERIMENTAL

Potassium cobalt hexacyanoferrate(II) was prepared by adding 0.5 M $Co(NO_3)_2$ solution to an equal volume of 0.5 M $K_4Fe(CN)_6$ solution. After washing, the precipitate was dried at 110 °C [8]. The composition of the product was determined by atomic absorption spectrophotometry from samples dissolved in boiling concentrated sulphuric acid. Determination of iron and cobalt gave the composition $K_{1.90}Co_{1.05}Fe(CN)_6 \cdot xH_2O$. The water content was calculated from the weight loss after heating a sample at 170 °C, and it was found to be 7.0%. This corresponds to 1.4 moles of water per mole of $K_2CoFe(CN)_6$.

The thermograms (TG, DTG, DTA and EGD) were determined using a Netzsch STA 429 thermobalance. The determinations were carried out in air atmosphere and the heating rate was 1° C min⁻¹.

X-ray diffraction patterns of powder samples heated to different temperatures were determined with a Siemens Kristalloflex 4 and a Philips APD 1700 diffractometer using monochromatised Cu $K\alpha$ radiation. The samples were heated in a Naber 2084 oven and the temperature was determined with a chromel-alumel thermocouple. The annealings were carried out in porcelain (≤ 650 °C) and platinum (900 °C) crucibles.

RESULTS AND DISCUSSION

The thermograms (Fig. 1) indicate four different weight-loss ranges: 20-170°C, 230-350°C, 550-900°C, and above 900°C. The first weight

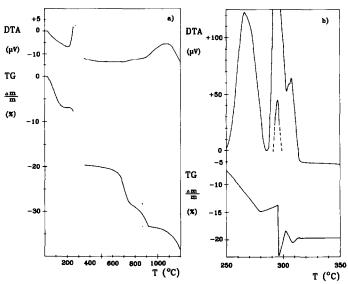


Fig. 1. Thermograms of $K_2CoFe(CN)_6 \cdot 1.4H_2O$: a, temperature range 20–1200°C; b, temperature range 250–350°C. Heating rate 1°C min⁻¹. Sample weight 50.2 mg.

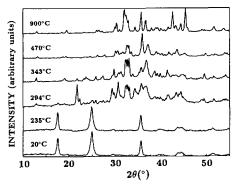


Fig. 2. X-ray diffraction patterns of solid products formed at different temperatures in the thermal decomposition of $K_2CoFe(CN)_6 \cdot 1.4H_2O$.

loss, occurring from ambient temperature $(20 \,^{\circ} \text{C})$ to $170 \,^{\circ} \text{C}$, is due to release of water. The loss was 7.0%, which corresponds to 1.4 moles of water per mole of $K_2\text{CoFe}(\text{CN})_6$. The water loss does not affect the crystal structure (FCC, a = 1.006 nm) [10]: the X-ray diffraction pattern of the anhydrous phase remains unchanged up to $230 \,^{\circ}\text{C}$ (Fig. 2). The water loss is reversible; the anhydrous phase reabsorbs water when in contact with air. Decomposition of anhydrous $K_2\text{CoFe}(\text{CN})_6$ begins above $230 \,^{\circ}\text{C}$: at about $300 \,^{\circ}\text{C}$ its reflections have disappeared from the diffraction pattern, indicating that the $K_2\text{CoFe}(\text{CN})_6$ has completely decomposed.

As seen from the thermograms the reactions become very complicated in the temperature range 230-350 °C. The cyanide groups are lost and gases are evolved. $K_3Fe(CN)_6$ and/or $K_3Co(CN)_6$ are formed as intermediate products, but being isomorphous these compounds cannot be distinguished from each other in the diffraction pattern. The other solid products formed in this temperature range are K_2CO_3 , Fe_2O_3 , Co_3O_4 and probably $CoFe_2O_4$.

Above about 350 °C, all the hexacyanoferrate(III) and hexacyanocobaltate(III) have decomposed and the products are K_2CO_3 , Fe_2O_3 , Co_3O_4 and $CoFe_2O_4$. For a sample annealed at 370 °C for one hour, the weight loss was 20.2%. The calculated weight loss would be 20.5% if the following decomposition had taken place

$$K_2CoFe(CN)_6 \cdot 1.4H_2O \rightarrow K_2CO_3 + \frac{1}{2}Fe_2O_3 + \frac{1}{3}Co_3O_4$$
 (1)

Because the proportion of $CoFe_2O_4$ was not known, its presence has been ignored. However, this introduces only a minor error in the calculation.

The mixture of K_2CO_3 , Fe_2O_3 , Co_3O_4 and $CoFe_2O_4$ is more or less stable up to 550 °C. Above this temperature the cobalt compounds are converted to CoO, and K_2CO_3 probably partly decomposes to K_2O . At 900 °C the products are K_2CO_3/K_2O , Fe_2O_3 and CoO. For samples annealed at

Fig. 3. Solid products formed in the thermal decomposition of K₂CoFe(CN)₆ · 1.4H₂O.

900-930 °C for 15-60 minutes, the weight loss was 29.4%. For the decomposition reaction

$$K_2 \text{CoFe}(\text{CN})_6 \cdot 1.4 \text{H}_2 \text{O} \rightarrow K_2 \text{CO}_3 + \text{CoO} + \frac{1}{2} \text{Fe}_2 \text{O}_3$$
(2)

the weight loss would be only 22.0%, whereas for the reaction

$$K_2C_0F_e(CN)_6 \cdot 1.4H_2O \to K_2O + C_0O + \frac{1}{2}F_{e_2}O_3$$
 (3)

the weight loss would be 33.7%. According to the observed weight loss, the proportion of K_2O is fairly high. Above 900°C, K_2CO_3 (m.p. 891°C) decomposes to K_2O .

Figure 3 shows the decomposition process in a step-wise manner. Only solid decomposition products are shown, without molar coefficients.

ACKNOWLEDGEMENT

The support received for this study from the Finnish Ministry of Trade and Industry is gratefully acknowledged.

REFERENCES

- 1 V. Pekarek and V. Vesely, Talanta, 19 (1972) 1245.
- 2 H. Loewenschuss, Radioact. Waste Manag., 2 (1982) 327.

- 3 W.F. Hendrickson and G.K. Riel, Health Phys., 28 (1975) 17.
- 4 W.E. Prout, E.R. Russell and H.J. Groh, J. Inorg. Nucl. Chem., 27 (1965) 473.
- 5 J. Lehto and R. Harjula, Solvent Extraction and Ion Exchange, 5 (1987) 343.
- 6 R. Harjula, J. Lehto and J. Wallace, Proceedings of the Symposium on Waste Management, Tucson, AZ, 1-5 March 1987, Vol. 3, p. 93.
- 7 J. Lehto, R. Harjula and J. Wallace, J. Radioanal. Nucl. Chem. Articles, 111 (1987) 297.
- 8 J. Lehto, S. Haukka, R. Harjula and M. Blomberg, J. Chem. Soc., Dalton Trans., in press.
- 9 T.S. Ceranic, Documenta Chemica Yogoslavica, 39 (1974) 285.
- 10 T. Ceranic, Z. Naturforsch., 33b (1978) 1484.